Parker Glynn-Adey

The Quantum Gravity Topological Quantum Field Theory Blues by Scott Carter

Posted in Math by pgadey on 2019/05/24

Scott Carter has some poetry up on his website. He works on knotted surfaces, and I think this version is just great. Back in the day, I wanted to understand knotted surfaces and I remember looking at his work a bit.

I’ve been calculating
I said I’ve been calculating
calculating all night long
Got a quasi- triangular Hopf algebra
and I wrote down the coproduct wrong.

I’ve been integrating
integrating the whole day through
I said I’ve been integrating
integrating the whole day through
Got a Chern-Simons functional integral
and its convergent, too.

I’ve been writing down knot diagrams
converting them to braids
Using the Alexander isotopy
you know I’m not afraid
I’ve been
assigning modules
to each of these six strings
been doin’ it for weeks now
and I still don’t understand a thing.

I’ve got them old Quantum Gravity
Topological Quantum Field Theory Blues
I’ve got them old Quantum Gravity
Topological Quantum Field Theory Blues
And without NSF funding I think that you would, too.


Tagged with: , ,

Quotes from “What if?” by Emily Clader

Posted in Math, Teaching and Learning by pgadey on 2019/05/23

I had to share these fantastic quotes from Emily Clader‘s piece “What If?: Mathematics, Creative Writing, and Play” in Journal of Humanistic Mathematics. The whole piece is great, and I encourage you to read it.

Mathematics … is a language, a set of structures through which ideas can be given both order and aesthetics. Like any language, it is capable of describing the world as one sees it, revealing patterns and properties that are often difficult to articulate without the right vocabulary. Yet also, like a language, mathematics can be used to explore the fantastic, the fictional, the conceivable but unreal. In providing an appropriate lexicon, mathematics gives form to our imagination of other worlds

Herein lies the true creative potential of mathematics. The precision of its language permits one to create a detailed imaginative picture of possible objects, possible structures, and possible worlds that do not, in practice,exist. Anything that can be conceived can be explored with as much rigor as the sensory world — indeed, even more so.

Tagged with: , , , , ,

Science Rendezvous!

Posted in Math by pgadey on 2019/05/12

This year, at Science Rendezvous, we shared symmetry and geometry. These areas of math are very beautiful and full of lovely patterns. In particular, we focused on how to connect geometry and symmetry using group theory. This approach was pioneered by Donald Coxeter, one of the most famous mathematicians of the twentieth century, and former professor at the University of Toronto. The big theme of our display was the notion of symmetry groups. This talk Symmetry and Groups by Professor Raymond Flood of Gresham College gives a great introduction to this connection.

Lukas brought his kaleidoscope, and I got it on video!


Three-Dimensional Kaleidoscope

Posted in Math by pgadey on 2019/05/05

My highschool student, Lukas Boelling, made this three-dimensional icosahedral/dodecahedral kaleidoscope with his dad, @eric_boelling. Lukas based his models off this excellent paper: Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes by Roe Goodman. Stay tuned for more models!

Tagged with: , ,

Polya on Guessing

Posted in Math, Uncategorized by pgadey on 2019/04/19
Tagged with:

Math Club Number Theory Training Session

Posted in Lecture Notes, Math by pgadey on 2019/01/31

These are some questions that I prepared for Math Club. The problems follow Paul Zeitz’s excellent book The Art and Craft of Problem Solving. You can find this hand-out is here: (tex)

1. Advice and Suggestions

  • Try out lots of examples.
  • The small numbers are your friends.

2. Facts and Questions

Fact 1 If {a, b \in \mathbb{Z}} we write {a | b} for the statement “{a} divides {b}.”
Formally, {a|b} means {b = ka} for {k \in \mathbb{Z}}.

Question 2 What is the largest {n} such that {n^3 + 100} is divisible by {n+10}? Idea: Find a factorization {n^3+100 = (n+10)( ... ) \pm C} where {C} is a small constant.

Fact 3 The “divisors” of {k} are all {d} such that {d | k}. We say {p} is “prime” if its divisors are {\{1, p\}}. We say that {k} is “composite” if it is not prime.

Fact 4 (Fundamental Theorem of Arithmetic) Any natural number {n} is a product of a unique list of primes.

Question 5 Show that {\sqrt{2}} is irrational. Generalize!

Question 6 Show that there are infinitely many primes. Euclid’s idea: Suppose there are finitely many {\{ p_1, p_2, \dots, p_n\}} and consider {N = p_1 p_2 \dots p_k + 1}.

Question 7 Show that there are arbitrarily large gaps between primes. That is, show that for any {k} there are {k} consecutive numbers {n, n+1, \dots, n+k} which are all composite.

Question 8 (Germany 1995) Consider the sequence {x_0 = 1} and {x_{n+1} = ax_n + b}. Show that this sequence contains infinitely many composite numbers.

3. Congruence

Fact 9 (The Division Algorithm) For any {a, b \in \mathbb{N}} there is a unique pair {(k,r)} such that {b = ka + r} and {0 \leq r < a}.

Fact 10 We write {a \equiv b \mod n} if {n | (a-b)}. For any {a \in \mathbb{Z}} there is \mbox{{r \in \{0, 1, \dots, n-1\}}} such that {a \equiv r \mod n}. We say that “{a} is congruent to {r} modulo {n}”. Congruence preserves the usual rules of arithmetic regarding addition and multiplication.

Question 11 Suppose that {n} has digits {n = [d_1 \dots d_k]} in decimal notation.

  1. Show that {n \equiv d_1 + d_2 + \dots + d_k \mod 9}.
  2. Show that {n \equiv d_k \mod 10}.
  3. Show that {n \equiv \sum_{k=0}^n (-1)^k d_k \mod 11}.
  4. Show that {n \equiv [d_{k-1}d_k] \mod 100}.

Question 12 What are the last two digits of {7^{40001}}?

Question 13 Show that any perfect square {n^2} is congruent to {0} or {1 \mod 4}. Conclude that no element of {\{11, 111, 1111, \dots\}} is a perfect square.

Question 14 Show that 3 never divides {n^2 + 1}.

4. The Euclidean Algorithm

Fact 15 The “greatest common divisor” of {a} and {b} is:

\displaystyle  \gcd(a,b) = \max\{ d : d|a \textrm{ and } d|b \}

Question 16 Show that {\gcd(a,b) = \gcd(a,r)} where {b = ak + r} and {(k,r)} is the unique pair of numbers given by the division algorithm.

Question 17 The Fibonacci numbers are defined so that {F(1) = 1, F(2) = 1}, and {F(n) = F(n-1) + F(n-2)} for {n>2}. Show that {\gcd(F_n, F_{n-1}) = 1}.

The Fibonacci numbers have the following curious property: Consecutive Fibonacci numbers are the worst-case scenario for the Euclidean Algorithm. In 1844, Gabriel Lamé showed: If {a \leq b \leq F_n} then the Euclidean algorithm takes at most {n} steps to calculate {\gcd(a,b)}. Check out this great write-up at Cut the Knot.

4.1. Parity

Question 18 Suppose that {n = 2k + 1} is odd and {f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}} is a permutation. Show that the number

\displaystyle  (1 - f(1))(2 - f(2)) \dots (n - f(n))

must be even.

Question 19 A room starts empty. Every minute, either one person enters or two people leave. Can the room contain {2401} people after {3000} minutes?
Idea: Consider the “mod-3 parity” of room population.

5. Contest Problems

Question 20 Show that {\displaystyle 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}} is not an integer for any {n > 1}.

Idea: Consider the largest power {2^k < n}. Divide out by this largest power. This will make all of the denominators odd. (In fancy number theory terms, you’re using a 2-adic valuation.)

Question 21 (Rochester 2012) Consider the positive integers less than or equal to one trillion, i.e. {1 \leq n \leq 10^{12}}. Prove that less than a tenth of them can be expressed in the form {x^3 + y^3 + z^4} where {x} , {y} , and {z} are positive integers.

Idea: None of {x}, {y}, or {z} can be very big. For example, {x < \sqrt[3]{10^{12}} = 10^4}.

Question 22 (Rochester 2003) An {n}-digit number is “{k}-transposable” if {N = [d_1 d_2 \dots d_n]} and {kN = [d_2 d_3 \dots d_n d_1]}. For example, {3 \times 142857 = 428571} is {3}-transposable. Show that there are two 6-digit numbers which are 3-transposable and find them.

\noindent Big Idea: Consider repeating decimal expansions.
Observe that {10 \times 0.[d_1 d_2 d_3 \dots] = d_1 . [d_2 d_3 d_4 \dots]}.
Find a number with a repeating decimal of length six.

Question 23 Suppose that you write the numbers {\{1, 2, \dots, 100\}} on the blackboard. You now proceed as follows: pick two numbers {x} and {y}, erase them from the board, and replace them with {xy + x + y}. Continue until there is a single number left. Does this number depend on the choices you made?

Tagged with: ,

Canada Math Camp — Storer Calculus

Posted in Math by pgadey on 2018/07/31

This slideshow requires JavaScript.

The handout for the talk is available here:

Tagged with: , , ,

Homework #5 Question 4

Posted in Math by pgadey on 2018/07/20

Consider a solid ball of radius R. Cut a cylindrical hole, through the center of the ball, such that the remaining body has height h. Call this the donut D(R,h). Use Cavalieri’s principle to calculate the volume of D(R,h). Calculate the volumes of D(25,6) and D(50,6).


Several students have asked what D(R,h) looks like. Here are some pictures that I found to illustrate the concept. The donut D(R,h) is the region between the red sphere and blue cylinder. The golden balls below show various views of the donut. The donut should fit between the two planes z=h/2 and z=-h/2, so that it has total height h.


Tagged with: ,

Malin Christersson’s Cube Toy

Posted in Math by pgadey on 2018/07/11


I was looking through the Geogebra site and found this lovely applet Orthographic Projection by Malin Christersson.

This is a lovely tool for investigating one of my favourite facts about hexagons:

The area maximizing orthogonal projection of a cube is the regular hexagon.

It turns out that Malin has tonnes of awesome geometry stuff online!

Awesome math art!

Tagged with: , ,

Public Talks for UTSC

Posted in Math by pgadey on 2018/07/05

From Colourings to Fixed Points

The notes for the talk are available here.

Uniform Convergence

The notes for the talk are available here.

Tagged with: