Parker Glynn-Adey

Hyperbolic Visualizations!

Posted in Math by pgadey on 2019/07/15

hyperbolic

Thanks to Vi Hart, Andrea Hawksley, Elisabetta A. Matsumoto, and Henry Segerman for making these amazing things!

Tagged with: ,

CMESG Day 3

Posted in Teaching and Learning by pgadey on 2019/06/03

Today at CMESG, we met with our working groups again. My working group on “problem based learning” started to design lesson plans around our problems. I was in the team of people working on upper-division problems. In particular, we wanted to design a lesson around the problem:

Classify the Platonic solids and prove that there are only five.

This turned out to be much larger than we expected, and the problem sort of blew-up in our face. We were not sure where to get started. It was a neat instance of what commonly happens when people approach a new problem; it gets out of hand and they’re not sure how to proceed. We struggled to figure out how much graph theory and group theory to introduce. Where would people take the problem?

If I were to run a problem based learning session, I’d like to go through a three levels of testing before trying the session with my students.

  • Try the problem on a non-mathematical friend. Is this interesting?
  • Experiment with some math friends. What content might it have?
  • Take the problem to a math club as a lesson plan. Where do people take it?

Once I knew that the problem was intrinsically interesting, could have some mathematical content, and wouldn’t go too wonky, I would write it up as a lesson plan to be used in a real class.

Tagged with: , , ,

Science Rendezvous!

Posted in Math by pgadey on 2019/05/12

This year, at Science Rendezvous, we shared symmetry and geometry. These areas of math are very beautiful and full of lovely patterns. In particular, we focused on how to connect geometry and symmetry using group theory. This approach was pioneered by Donald Coxeter, one of the most famous mathematicians of the twentieth century, and former professor at the University of Toronto. The big theme of our display was the notion of symmetry groups. This talk Symmetry and Groups by Professor Raymond Flood of Gresham College gives a great introduction to this connection.

Lukas brought his kaleidoscope, and I got it on video!

(more…)

Three-Dimensional Kaleidoscope

Posted in Math by pgadey on 2019/05/05

My highschool student, Lukas Boelling, made this three-dimensional icosahedral/dodecahedral kaleidoscope with his dad, @eric_boelling. Lukas based his models off this excellent paper: Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes by Roe Goodman. Stay tuned for more models!

Tagged with: , ,

Homework #5 Question 4

Posted in Math by pgadey on 2018/07/20

Consider a solid ball of radius R. Cut a cylindrical hole, through the center of the ball, such that the remaining body has height h. Call this the donut D(R,h). Use Cavalieri’s principle to calculate the volume of D(R,h). Calculate the volumes of D(25,6) and D(50,6).

donut

Several students have asked what D(R,h) looks like. Here are some pictures that I found to illustrate the concept. The donut D(R,h) is the region between the red sphere and blue cylinder. The golden balls below show various views of the donut. The donut should fit between the two planes z=h/2 and z=-h/2, so that it has total height h.

SphericalRingSolid_800napring2

Tagged with: ,

Basic Combinatorics.

Posted in Uncategorized by pgadey on 2014/07/27

First we recall a little bit of terminology:

1.1. Sets and functions

A set is a collection of elements . We write a set by surrounding its list elements with curly braces. For example: {X = \{1,2,3\}}, {Y = \{\heartsuit, \clubsuit, \star\}}. We also use set constructor notation {Y = \{x : P(x)\}} where {P(x)} is some statement about {x} that can be true or false. For example: {X = \{n : n\text{ is even}\}}, {Z = \{n : n\text{ is prime}\}}. We write: {\{\} = \emptyset}, {{\mathbb N}} for the set of natural numbers, {{\mathbb Q}} for the set of rational numbers, {{\mathbb Z}} for the set of integers.

We write {x \in X} to mean that {x} is in the set {X}. We write {X \cup Y = \{x : x \in X \text{ or } x \in Y\}}. We write {X \cap Y = \{x : x \in X \text{ and } x \in Y\}}. We write {X \sqcup Y} for {X \cup Y} if {X \cap Y = \emptyset}. If {X \cap Y = \emptyset} then we say that {X} and {Y} are disjoint sets.

We write {X \times Y = \{(x,y) : x \in X,\ y \in Y\}} for the set of ordered pairs of elements.

Definition 1 A function {f : X \rightarrow Y} is injective (one to one) if: {x \neq y} implies {f(x) \neq f(y)}. A function is surjective (onto) if: for all {y \in Y} there is {x \in X} such that {f(x) = y}. A function is bijective if: for all {y \in Y} there is {x \in X} such that {f(x) = y}. The number of elements in a set {X} is written {|X|}.

1.2. Basic formulae

The basic facts of combinatorics are very simple.

  1. If {k < n} then there is no injective function from a set with {n} elements to a set with {k} elements. (This is called pigeon hole principle.)
  2. If there is a bijective function from {X} to {Y} then {|X| = |Y|}.
  3. If {X} and {Y} are disjoint then {|X \cup Y| = |X| + |Y| - |X \cap Y|}.
  4. If {X} and {Y} are disjoint then {|X \sqcup Y| = |X| + |Y|}.
  5. {|X \times Y| = |X| \cdot |Y|}.
  6. The number of {k} element subsets of a set with {n} elements is: {\binom{n}{k} = \frac{ n! }{ (n-k)! k! }}. (Why is this an integer? Prove it.)
  7. The number of functions from an {n}-element set to a {k} element set is {k^n}.
  8. If {|X| = n} then the number of bijective functions from {X} to {X} (permutations of {X}) is {n!}.

There are a couple formulae that are handy to remember:

  1. There are {2^n} subset of {\{1, \dots, n\}}.
  2. Suppose you have {n_1, \dots, n_k} objects of types 1, 2, {\dots}, {k} respectively. The number of ways of arranging all the objects is: {{ (n_1 + \dots + n_k)! }/{ 				 n_1! n_2! \dots n_k! }}
  3. Suppose you have {n} identical objects that you want to distribute among {k} containers. The number of ways to do this is: {\binom{n+k-1}{k-1}}. (Why?)

Tagged with: , , ,

Dodecahedral Crafts

Posted in Math by pgadey on 2014/03/02

Math Crafts

This evening I made some dodecahredral crafts to show my mentoring students. This week we’re proving that the dodecahderon actually exists, by constructing it explicitly. The model on the right illustrates our proof splendidly. For instructions, check out Laszlo Bardos’ site CutOutFoldUp.com. The dodecahedral calendar is from Marlies’ Crafts.

Tagged with: ,

Singularities I.1

Posted in Math by pgadey on 2013/12/04

These are some notes that I’m writing up on Gromov’s papers on singularities of maps. This first post will look at some of the introductory material in: Singularities, Expanders and Topology of Maps. Pt 1. These notes will be a partial introduction to what is going on.

(more…)

Tagged with: , ,

Of Waists and Spheres

Posted in Math by pgadey on 2013/11/19

These are some notes that I’m writing up on Gromov‘s waist inequality. We’ll look at some standard material about the Borsuk-Ulam theorem and finish with a nice application of the inequality.

(more…)

Of Loewner and Besicovitch

Posted in Math by pgadey on 2013/11/05

I’d like to share some of the notes that I’m writing up about systoles. After a little bit of preliminaries we’ll see a slick proof the systolic inequality in the torus case.

The systole of manifold is the length of the shortest non-contractible curve in the manifold. Systoles hard to estimate. In general there are many many non-contractible curves, and its not easy to track down which one should be smallest. If someone hands you a donut, you’ll visually guess the systole correctly. If someone hands you a coffee cup, it’s still clear. Once you get a generic metric, you’re in deep water. Loewner‘s theorem gives us an upper bound on the systole a Riemannian 2-torus (generalized donut / coffee cup case).

(more…)

Tagged with: ,