## MSLC Summer Seminar

- May 30th “Derivation and applications of the gamma function” by David Salwinski
- June 6th “An Extension of Heron’s Formula” by Zohreh Shahbazi
- June 13th “What is Homology?” by Parker Glynn-Adey
- June 20th “Exploring Mathematics Learning Support Across Canadian Universities” by Rubina Shaik and Shrijan Rajkarnikar
- June 27th “Liouville numbers and irrationality measure” by David Salwinski
- July 4th “Representation theory” by Lisa Jeffery
- July 11th “Geodesics on Surfaces of Revolution” by Amanda Petcu
- July 18th “An (informal) Introduction to Model Theory and Skolem’s Paradox.” by Yasin Mobassir
- July 25th “Geometric Reflections” by Parker Glynn-Adey
- August 1st “The Inscribed Square Problem” by Amanda Petcu

## Geometric Reflections

Kaleidoscopes create wonderful geometric patterns.

They are both beautiful and thought provoking.

There is something pleasing to a mystic in such a land of mirrors. For a mystic is one who holds that two worlds are better than one. In the highest sense, indeed, all thought is reflection — Chesterton

In this talk, I outlined the mathematical theory of kaleidoscopes.

We introduced Coxeter geometries, and classified them in the plane.

leave a comment