Parker Glynn-Adey

NIBL&T Day 3

Posted in Teaching and Learning by pgadey on 2019/06/08

Team-Based Learning in a Large Calculus Class

Heather Bolles, Iowa State University; Amanda Baker, Iowa State University; Travis Peters, Saint John’s University; Elgin Johnston, Iowa State University; Darin Wohlgemuth, Iowa State University

Description: Implementing Team-Based Learning in a large-enrollment calculus class (more than 150 students) involves significant planning, stamina, and buy-in from students, instructors, and administrators. In this session, we share how we adapted the TBL flipped model to both Calculus I and II, the collaborative approach in developing and implementing materials, the continual evolution of the process, and the resources and classroom spaces we found helpful. Qualitative and quantitative data gathered over a three year period provide indications of success and identify where adjustments are yet needed. During the session, we will briefly model how we engage students in an application exercise following the Readiness Assurance Process, where students gain initial exposure to the topic.

Disseminating IBL via Geometry

David M. Clark, SUNY New Paltz; Samrat Pathania, Wallkill High School
Description: This talk will report on a multiyear project to advance the use of IBL through the teaching of geometry. Currently the speaker is co-authoring a nearly completed book with Pathania entitled “High School Geometry: A Full Axiomatic Development”. Directed to college/university instructors, it will give them the full theoretical underpinnings of the speaker’s 2012 undergraduate text, “Euclidean Geometry: A Guided Inquiry Approach”.

The 2012 text is primarily intended to give pre-service and in-service high school teachers (1) a personal learning experience through IBL and (2) an in depth understanding of exactly the topics they will need to teach. Whether or not they eventually do teach geometry, they will leave this course with a sound knowledge of what IBL is and how it is implemented so that they can draw on it for whatever they do teach.

High school students need to learn how to make evidence based arguments and judge when others are successfully doing so. This project will foster that goal by offering a vertically coherent view of geometry, giving high school students, high school teachers and research mathematicians a common basis for understanding this key subject.

Inquiry-Oriented Instruction as Principled Improvisation

Darryl Yong, Harvey Mudd College
Abstract: A very common IBL instructional routine involves posing tasks to students, monitoring their progress, and providing support as students tackle those tasks. The monitoring and supporting phases of instruction are often highly improvisational because they are less scripted and more dependent on what students do and say. What principles guide you during these phases of instruction? How can we work toward greater mathematical understanding, greater equity and inclusivity in our classes during this phase of instruction?

Oh! One more thing.

3D Printed Manipulatives for Calculus

Sebastian Bozlee, University of Colorado Boulder; Faan Tone Liu, University of Denver; Caroline Matson, University of Colorado Boulder; Cherry Ng, University of Colorado Boulder; Athena Sparks, University of Colorado Boulder; Porsche Adams Wootton, University of Colorado Boulder

Description: Intermediate students in calculus are often challenged by visualizing the applications of calculus in 3-dimensions. As we generalize curves in 2-dimensions and areas under a curve to surfaces and volumes constructed from functions, students benefit from a variety of approaches. We have used a 3D printer to develop numerous models and activities for our Calculus sequence. We will present an activity investigating solids with known cross-sections and various homework and lecture models for Calculus 2. We will discuss how these models are integrated in the classroom, how we developed the codes for and produced these models, and what plans are in progress to extend this work. We will also discuss how we established the 3D printer as a department resource including the expenses and support involved.

A brief description is available at: https://cu3d.github.io/

Tagged with:

NIBL&T Day 2

Posted in Teaching and Learning by pgadey on 2019/06/07

Oh man! Today was fantastic. I attended an online workshop by Tim Brzezinski on GeoGebra 3D. We did some 3D modelling, and did a worksheet. I’m amazed by all the stuff that GeoGebra can do. Previously, I’d only ever used it for simply graphing z=f(x,y) for my students. Now that I’m aware of its powerful geometric toolkit, it seems like the sky is the limit.

Towards the end of the session, we got to use GeoGebra 3D on our phones to do augmented reality stuff. Tim modeled a Toblerone bar, and then virtually super-imposed it on the real thing. Tim’s Geogebra page is full of amazing geometric stuff. He constantly tweets interesting math ed material at @dynamic_math. I encourage you to check it out. I’m definitely going to be using the augmented reality features soon.

Tim’s GeoGebra 3D with AR (Google): Explorations & Lesson Ideas

Steve Phelps’ Pythagoras Proofs without Words

The second session that I attended was a round table discussion on using inquiry to promote productive failure, resilience, grit, and growth mind set. We shared various metaphors that we use to explain growth mindset to our students. I often talk about math exercises as a form of weight lifting. Usually, I say this to make the point that watching me solve exercises doesn’t build up that skill in my students. The folks that I was chatting with developed the metaphor in a bunch of new directions, weight lifting involves: pain (productive failure), works best on a regular schedule, benefits from a minimum of expert guidance, prepares us for non-weight lifting tasks.

People have been giving five minute talks here. I love the format. You get to hear someone give a good pitch in a short, concise, and often simple way. The take away for me today was the notion of a MathsJam, a social gathering of people at a pub to talk about math. Brilliant!

Tagged with:

NIBL&T 2019 Day 1

Posted in Teaching and Learning by pgadey on 2019/06/07

I just finished up my first day at the Inquiry Based Learning and Teaching Conference in Denver, Colorado. It is great to see my friends from the Inquiry Based Learning Workshop last summer. My colleagues Alex Rennet and Jaimie Thind from UTM are here as well. A couple people at the conference have commented on what a strong IBL presence we have at UTM. Woot!

Setting the Stage for Small Group and Whole Class Discussions: Eliciting and Building on Student Thinking

Karen Keene, National Science Foundation & Nicholas Fortune, Western Kentucky University

Description: During this workshop, faculty will focus on two main themes: 1) how to set up their classrooms’ norms and environment to be able to have productive small group and whole class discussions, and 2) what teacher moves they can use during small group and whole class discussions to directly elicit their students’ thinking and build on that thinking. Each of these main themes will come with a mini-activity to gain first-hand experience. Topics for the first theme include but are not limited to ways to set up groups, how to provide an encouraging environment where it is acceptable to make mistakes, and using challenging tasks. Topics for the second theme include but are not limited to eliciting and building on students’ thinking, revoicing, peer to peer interactions, and connecting small group work to whole class discussion.

An active approach to calculus II and how it can help address (and create?) challenges

Jeanette Mokry, Dominican University; Aliza Steurer, Dominican University

Description: In addition to the new content that calculus II brings to our students, it also requires more decision-making and explanations of solutions than calculus I. Many topics in calculus II require students to make a decision. For example, “What series test should I use?” After deciding what series test to use, students must correctly interpret the results of the test and/or explain their reasoning. This can make the material quite challenging for students. Also, much of the content builds on prior knowledge, which can create challenges for the instructor, such as needing to present new material and also connect with the “old.” Mathematics also requires great attention to detail, including derivative notation, limit notation, and proper use of an equals sign. In the face of these challenges, how do we keep students motivated and help them see that, contrary to what they may have heard about the course, the material is doable? We will discuss how we have used active-learning worksheets to address some of these challenges as well as new challenges this approach can bring to the students and the instructor. At the beginning of our presentation, we will ask the audience what challenges they and their students have encountered with calculus II. Participants will also complete a short worksheet and, together as a group, we will discuss how that worksheet might address or create challenges in our classrooms.

From Place Values to Place Matters: An Indigenous Perspective on Calls for Diversity, Equity, and Justice in Mathematics and Mathematics Education

Belin Tsinnajinnie, Santa Fe Community College

Abstract: Despite perspectives that view mathematics as universal and culture free, policies and practices in mathematics education continue to perpetuate forces of settler colonialism and assimilation. Failed U.S. policies in Native American education illustrate the damaging impacts of assimilation and settler colonialism in education. What practices in our mathematics programs perpetuate settler colonialism and assimilation? In what ways can attenuating to our sense of place better serve goals of equity, justice, and inclusion?

Tagged with: , ,