Parker Glynn-Adey

Of Loewner and Besicovitch

Posted in Math by pgadey on 2013/11/05

I’d like to share some of the notes that I’m writing up about systoles. After a little bit of preliminaries we’ll see a slick proof the systolic inequality in the torus case.

The systole of manifold is the length of the shortest non-contractible curve in the manifold. Systoles hard to estimate. In general there are many many non-contractible curves, and its not easy to track down which one should be smallest. If someone hands you a donut, you’ll visually guess the systole correctly. If someone hands you a coffee cup, it’s still clear. Once you get a generic metric, you’re in deep water. Loewner‘s theorem gives us an upper bound on the systole a Riemannian 2-torus (generalized donut / coffee cup case).

(more…)

Tagged with: ,